
FuzzGAN: A Generation-Based Fuzzing Framework
for Testing Deep Neural Networks

Ge Han
School of Computer Science and Technology

Shandong University
Shandong, China

hangehg@126.com

Chengyu Hu
School of Cyber Science and Technology

Shandong University
Shandong, China

hcy@sdu.edu.cn

Zheng Li
CISPA Helmholtz Center for

Information Security
Saarland, Germany

zheng.li@cispa.de

Peng Tang
School of Cyber Science and Technology

Shandong University
Shandong, China

tangpeng@sdu.edu.cn

Shanqing Guo
School of Cyber Science and Technology

Shandong University
Shandong, China

guoshanqing@sdu.edu.cn

Abstract—Deep neural networks (DNNs) are increasingly de-
ployed in various fields. Despite their spectacular advances,
DNNs are known to suffer from adversarial vulnerabilities. The
robustness of DNNs is then threatened by leading them to
misclassifications with unexpected inputs (adversarial examples).
The fuzzing technique frequently used for testing traditional
software has recently been adopted to evaluate the robustness
of DNNs. Current DNN fuzzing techniques focus on image
classification DNNs and generate test cases by mutations, e.g.,
image transformations and adversarial perturbations. However,
mutation-based test cases usually lack diversity and have dis-
tribution deflection from the original DNN input space, which
impacts the evaluation of DNNs.

In this paper, we propose a generation-based fuzzing frame-
work FuzzGAN to detect adversarial flaws existing in DNNs.
We integrate the testing purpose and the guidance of the
neuron coverage into the original objectives of auxiliary classifier
generative adversarial networks. Hence, FuzzGAN learns the
representation of a DNN’s input space and generates test cases
without the limitation of any concrete seed input. We evaluate
the performance of FuzzGAN on two DNN models that have
classical network structures and are trained on public datasets.
The experiment results demonstrate that FuzzGAN can generate
realistic, diverse and valid test cases and achieve high neuron
coverage. Moreover, these test cases can be used to improve the
performance of the target DNN through adversarial retraining.

I. INTRODUCTION

Deep neural networks (DNNs) are a set of machine learn-

ing algorithms modelled loosely after the biological neural

networks to progressively approach their tasks based on data

representation learning [27]. The widespread adoption makes

it crucial to discuss the security properties of DNNs, especially

those adopted in safety-critical domains.Unfortunately, DNNs

always suffer from adversarial attacks [31] which subtly mod-

ify inputs resulting in incorrect behaviours. Therefore, it is

in great demand to test and improve the robustness of DNNs

against adversarial attacks.

Recently, fuzzing, one of the most widely-deployed tech-

niques for traditional software, has been utilized to evaluate

DNN robustness [4], [6], [8], [22], [25], [33], [34], [38]. It

tests DNNs by automatically generating misleading test cases

guided by coverage criterion to find internal vulnerabilities.

Furthermore, all current DNN fuzzing works are mutation-

based fuzzing [13]. They apply various mutations to given

seed inputs for generating test cases, such as perturbations [8],

[22], [25], [33], image transformations [4], [6], [34] and image

translation [38].

However, mutation-based fuzzing has two drawbacks in test

case generation. Firstly, the diversity of test cases is limited

since each test case is mutated from individual seed input,

and seed inputs are settled. The lack of diversity may further

affect the adequacy of detecting DNN vulnerabilities [1]. Sec-

ondly,converting an innocent image to adversarial for testing

usually requires vast mutation and causes noticeable distri-

bution deflection. Such deflection may damage the semantic

information of test cases and confuse the testing – whether the

misclassifications are caused by the distribution deflection in

test cases or the defects of DNNs [13].

To mitigate the drawbacks of existing mutation-based DNN

fuzzing techniques, we propose a new fuzzing framework

FuzzGAN for evaluating DNN robustness. FuzzGAN is chal-

lenged to improve the quality of test cases with a novel

generation method rather than seed input mutations. Secondly,

a corresponding test oracle that determines the correctness

of DNN behaviors is requisite for new test case generation

method. Moreover, FuzzGAN is required to guarantee the

adequacy of the testing, i.e. to maximize the coverage of tested

DNNs effectively. In this paper, we take neuron coverage [25]

as the coverage criterion to guide test case generation. The

successful application of neuron coverage in FuzzGAN po-

tentially implies a similar success in any other criterion.

To solve the challenges aforementioned, we design Fuz-

zGAN as a generation-based fuzzing framework. Taking ad-

vantage of auxiliary classifier generative adversarial network

(ACGAN) [23] technique, the test case generator in FuzzGAN

1601

2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th
Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application

979-8-3503-1993-4/22/$31.00 ©2022 IEEE
DOI 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00244

20
22

 IE
EE

 2
4t

h
In

t C
on

f o
n

Hi
gh

 P
er

fo
rm

an
ce

 C
om

pu
tin

g
&

 C
om

m
un

ic
at

io
ns

; 8
th

 In
t C

on
f o

n
Da

ta
 S

ci
en

ce
 &

 S
ys

te
m

s;
 2

0t
h

In
t C

on
f o

n
Sm

ar
t C

ity
; 8

th
 In

t C
on

f o
n

De
pe

nd
ab

ili
ty

 in
 S

en
so

r,
Cl

ou
d

&
 B

ig
 D

at
a

Sy
st

em
s &

 A
pp

lic
at

io
n

(H
PC

C/
DS

S/
Sm

ar
tC

ity
/D

ep
en

dS
ys

) |
 9

79
-8

-3
50

3-
19

93
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HP
CC

-D
SS

-S
M

AR
TC

IT
Y-

DE
PE

N
DS

YS
57

07
4.

20
22

.0
02

44

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 20,2023 at 06:48:12 UTC from IEEE Xplore. Restrictions apply.

learns the representation of real data and generates new data

cases under specified classes. Due to the generative ability of

generative adversarial networks [10], the generated cases are

not limited to individual seeds and are located close to the real

data distribution. The classes specified during generation are

utilized as the test oracle to assess the correctness of DNN

predictions on generated cases. Moreover, we take the tested

DNN as an auxiliary party for training the test case generator.

Besides fooling a discriminative network, the generator aims

to lead the tested DNN to misclassifications and increase the

output of the specified neuron. Then, generated cases are more

likely to be adversarial for detecting DNN vulnerabilities and

be able to enhance neuron coverage.

The main contributions of this work include:

• We propose a generation-based fuzzing framework Fuz-

zGAN for evaluating the robustness of DNNs. To the best

of our knowledge, FuzzGAN is the first generation-based

DNN fuzzing framework so far.

• Taking advantage of generative adversarial networks,

FuzzGAN achieves the following objectives: 1) generate

realist images for specified class from random noise, 2)

generate images leading the tested DNN to errors, 3)

achieve high test coverage by a set of test cases (test

suite).

• We implement FuzzGAN to separately test a LeNet-

1 model trained on MNIST and a VGG-11 model on

LSUN, and then evaluate it by comparing with related

DNN fuzzers. The results present that the test cases gener-

ated by FuzzGAN are visually better than mutation-based

test cases and have comparable performance on IS and

FID metrics and on coverage enhancement. Additionally,

it is proved that a pre-trained generation-based fuzzer

is much more efficient than mutation-based fuzzers in

generating adversarial test cases.

II. PRELIMINARIES

A. Fuzz Testing for DNNs

Fuzz testing, often known as fuzzing, is a testing approach

usually used in programming and software development. It

automatically generates invalid, unexpected, or random data

as inputs for a computer program trying to cause crashes,

errors, memory leaks, and so on. The program is then detected

for defects and vulnerabilities. Fuzz testing usually requires

three primary components [2]: the test coverage criterion
as metric for measuring the adequacy of testing and guide

the generation of test cases, the test oracle for determining

whether the output of target program is correct, and the test
case generation algorithm describing the automatic process

of generating test cases. Fuzzing techniques can be classified

into mutation-based fuzzing and generation-based fuzzing
according to whether the test cases are generated through the

mutation of given inputs or generated by a specification or

other previous knowledge [13].

The fuzzing technique has been used for evaluating the ad-

versarial robustness of DNNs in recent work [4], [6], [8], [22],

[25], [33], [34], [38]. The target of DNN fuzzing is to discover

inner vulnerabilities that have the potential to be leveraged by

adversarial attacks [31]. Targeting at classification DNNs, a

DNN fuzzer tests a DNN by generating adversarial inputs as

test cases and monitoring incorrect classifications.

B. Neuron Coverage

We take neuron coverage [25] as the coverage criterion of

our fuzzing framework. The neuron coverage is defined as the

ratio of the neurons activated by any test case in a test suite

T = {x0, x1, ..., xq} (a set of test cases) to all the neurons

N = {n1, n2, ..., np} in the DNN under test. A neuron is

considered to be activated if the value of its output is high

enough (higher than a threshold t), such that its impact on

neurons in subsequent layers and even the output layer is

significant. Let ni(xj) be the output value of a neuron ni

in DNN for a given test case xj . The neuron coverage (NC)

can be presented as follow:

NC(x) =
|{n|∀x ∈ T, n(x) > t}|

|N | (1)

Both positive and negative values exist among neuron

outputs and weights. Hence, we regard that a larger absolute

value of neuron output implies a more significant impact on the

following layers, and a zero implies no impact. Additionally,

we normalize the averaged output of all elements inside

a multidimensional neuron as its output value. Hence, the

neurons with various dimensions and value ranges can be

compared with the same threshold.

C. Generative Adversarial Network Techniques

The auxiliary classifier generative adversarial network [23],

or ACGAN for short, is an essential part of FuzzGAN. Two

primary components within an ACGAN are a generator G
and a discriminator D. The generator takes a latent code

z ∼ pz as input and attempts to produce a fake sample

x′ = G(z), while the discriminator determines whether an

observed sample xin is real or fake. The competition between

G and D enables mapping latent codes in a low-dimensional

random distribution pz to semantically meaningful samples in

a high-dimensional space pdata. Especially, ACGAN is a type

of GANs that involves the conditional generation of images

with a corresponding class label c ∈ C (available classes) in

addition to the noise z: x′ = G(z|c). In addition to predicting

whether a given image is real or fake, the discriminator in

ACGAN predicts the class label of the given image. It allows

FuzzGAN to generate test cases with labels as the test oracle.

III. METHODOLOGY

In this paper, we propose FuzzGAN to test the robustness

of deep neural networks against adversarial examples. We

investigate DNN testing in a white-box scenario where the

tester has full access to the tested DNN, including the train-

ing algorithm, data, network structure, and internal weights.

As a fuzzing framework, FuzzGAN automatically provides

adversarial inputs as test cases for a DNN and monitors

incorrect classification outputs. Generally, FuzzGAN employs

1602

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 20,2023 at 06:48:12 UTC from IEEE Xplore. Restrictions apply.

Generator �
generated images

��� � ��	
 �
 ��

Discriminator �real images �

Tested DNN

���������

��

model output ������, neuron output �����

�

	

�

Generator �
generated images

��� � ��	
 �
 ��
Tested DNN

Neuron Tracker

������

�����
�

	

neuron location �

Testing Phase

Training Phase

Fig. 1. An overview of the generation-based DNN fuzzing framework
FuzzGAN.

the ACGAN technique to generate input cases under given

class labels. The generation is under the guidance of neuron

coverage. The labels given for generation are used as the

test oracle to determine whether the predictions of a DNN

on generated cases are correct. In this section, we start by

introducing the general process of FuzzGAN, and then we

describe the design of our test case generator.

A. General Process of FuzzGAN

Aiming to improve the diversity of generated test cases,

we introduce generative adversarial network techniques to our

fuzzing framework. The lifecycle of FuzzGAN contains two

phases, i.e. training and testing phases (as shown in Figure 1).

In the training phase, a generative model G is deliberately

trained against a discriminative model D. The generator is

trained to learn the distribution of original inputs and syn-

thesize samples addressing the challenges listed in section I.

The details of G will be specifically described in the next

subsection. The training phase can be regarded as a preparation

for the subsequent testing phase, in which fuzz testing is

conducted with the trained generative model as a test case

generator.

In the testing phase (illustrated in algorithm 1), FuzzGAN

iteratively generates input samples toward the tested DNN.

We define a tracker neuron tracker to record the activation

state of all neurons in tested DNN. A neuron is marked as

”activated” if it has, so far, been activated by at least one test

case in the test suite. The test case generator G takes three

input parameters: random noise z, randomly selected class c
and the location information l of a neuron nl. The neuron

nl is randomly selected among non-activated neurons from

Algorithm 1: Testing Phase of FuzzGAN

Input: dnn ← the DNN under test; g ← a test case

generator trained through GAN; C ← the set

of all classes; t ← the threshold of activation;

d ← the desired neuron coverage.

Output: test suite ← a set of test cases.

1 Function COVERAGE(neuron tracker):
2 a num ← the number of activated neurons;

3 num ← the number of all neurons in tested DNN;

4 return a num/num;

5 test suite ← an empty set;

6 neuron tracker ← set all neurons non-activated;

7 for COVERAGE(neuron tracker) < d do
8 c ← target class randomly selected from C;

9 z ← random noise;

10 l ← the location information of a non-activated

neuron randomly selected from neuron tracker;

11 c ← target class randomly selected from C;

12 x′ ← g (z, c, l);
13 if dnn (x′) �= c then
14 test suite.add (x′);
15 neuron tracker.update (dnn, x′);

neuron tracker. Then, G outputs a synthesized input sample

x′ = g(z, c, l) to the tested DNN dnn.

Only the generated input samples that lead the tested DNN

to erroneous classifications (dnn(x′) �= c) are effective test

cases for fuzzing and will be appended into a test suite

test suit. Once the test suite is enlarged by a new test case x′,
the neuron activation tracker neuron tracker will be checked

and updated. The loop of generating input samples terminates

when the desired neuron coverage requirement d is achieved.

In the end, the tester obtains a set of test cases test suite
through FuzzGAN, by which the test may achieve a relatively

high neuron coverage.

B. Test Case Generator

Since FuzzGAN is proposed as a framework for generation-

based fuzzing, its test case generator is expected to synthesize

test cases by learning the global distribution of DNN input

space rather than mutating from individual seeds. To this end,

the generative adversarial network technique is employed to

train it (displayed in Figure 1).

In the duration of the training procedure, FuzzGAN itera-

tively trains the test case generator G with a discriminative

model D. The generator G takes random noise z, randomly

selected class c and the location l of a randomly selected

neuron nl as input, and then synthesizes an input sample x′

to the tested DNN dnn. The discriminative model D takes

input xin from either the real data set X or G generated

samples, and then classifies xin as c′ and distinguishes whether

the it is a real sample x (xin ∈ X) or a generated one x′

(xin = g(z, c, l)). Both G and D are multi-layer perceptrons

1603

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 20,2023 at 06:48:12 UTC from IEEE Xplore. Restrictions apply.

with convolutional layers. The training process of them is

guided by the loss functions representing each model’s ob-

jective. The models achieve their functionalities by decreasing

the loss with the gradient descent method.

The discriminator D has two main tasks, classifying the

input sample xin and distinguishing whether the input is

synthetic or real. Its loss function LD thus has two parts:

LD = Lclass + Lreal

Lclass = CrossEntropyLoss(pc, c)

Lreal = E[logP (real|xin ∈ X)]

+ E[logP (fake|xin ∈ g(z, c, l))]

(2)

We use pc = {p1, p2, ..., pk} to denote a vector of probabilities

classifying xin as each class, where k is the number of

classes. We use the cross-entropy loss CrossEntropyLoss(·)
between pc and c to represent D’s loss on classifying Lclass.

It increases when the predicted probability diverges from the

target class. Lreal denotes the loss of determining whether an

input is from the real data set, where E(·) calculates the value

of expectation.

The G, firstly, aims to generate valid input cases under

given classes, which requires confusing D’s discrimination

functionality and coordinating D’s classifying. Thus, G is

trained to maximize D’s loss of discrimination Lreal and to

minimize Lclass. Additionally, the generated data is supposed

to address the rest objectives: leading the tested DNN to

erroneous behaviours and maximising the neuron coverage.

We take the tested DNN dnn as an auxiliary party and

iteratively train G with the aid of feedback from it. The

former DNN-related objective requires G to maximise the

cross-entropy loss of dnn for not classifying the x′ to the

specified class c. At last, G is trained to maximise the output

of the neuron specified by input l. l denotes a neuron’s location

information, including the layer llayer it belongs to and the

concrete index lindex inside this layer. When G is used for

testing, the l will be assigned according to a traced neuron

activation state.

In summary, the loss function of G is designed as a linear

combination of three parts:

LG = Lvalid + λ1 · Lerror + λ2 · Lneuron,

Lvalid = Lclass − Lreal,

Lerror = −CrossEntropyLoss(dnn(x′), c),
Lneuron = CrossEntropyLoss(layer(x′, llayer), lindex)

(3)

CrossEntropyLoss(·) is used to measure the performance of

the tested DNN on classification (Lerror). It is also employed

in Lneuron. Function layer(x′, llayer) returns the outputs of all

neurons in the layer containing nl. By minimizing Lneuron,

the averaged absolute output value of the specified neuron

nl (neuron no.lindex) diverges from the others in the same

layer (layer no. llayer). Then, the normalized output value of

nl will be increased. Hyper parameters λ1 and λ2 are the

weights directing the trade-off among the importance of each

individual loss term in LG.

IV. IMPLEMENTATION

As a proof-of-concept, we implement FuzzGAN for testing

two DNNs. The first test DNN is a LeNet-1 [11] that contains

6 layers and 52 neurons in total. It is a character recognizer

previously trained on MNIST (Modified National Institute of

Standards and Technology database [12]) with an accuracy of

98.34%. The input images to LeNet-1 are of size 28*28.

FuzzGAN has been further implemented to test a VGG-11

network [28] trained on dataset LSUN [35]. The images in

LSUN are divided into 10 categories, and the VGG-11 under

test was trained to classify images from four of them (towers,

restaurants, dining rooms, and bridges). The tested VGG-11

takes RGB images in the size of 64*64 as input and achieves

an accuracy of 93.4%. The VGG-11 contains 15 layers and

4763 neurons.

In the experiment, FuzzGAN is trained by traversing

MNIST for 100 epochs (1200 epochs for LSUN) with a

learning rate of 0.0002 (0.0004 for LSUN). Images from the

dataset were fed in batches of 128, and one fed batch triggers

one iteration of training steps. We performed the grid search

to find the optimum loss weights λ1 and λ2 for each tested

DNN. We empirically set λ1 as 0.5 for testing the LeNet-1 on

MNIST and 0.1 for the VGG-11 on LSUN. The value of λ2

varies for each layer of a tested DNN.

V. EVALUATION

We implement FuzzGAN to test two DNNs separately

and analyse the testing results. Additionally, we take Deep-

Xplore [25], DeepHunter [34] and CAGFuzz [38] among

existing DNN testing techniques (reviewed in section VI) as

our evaluation benchmarks. Since DeepXplore generates test

cases in three different manners (blackout, light and occlude)

and DeepHunter has two strategies for mutation selection

(tensorfuzz and prob), we consider them as distinct benchmark

fuzzers. Similarly to FuzzGAN, all the benchmark fuzzers

employ the fuzzing technique, use neuron coverage as their

coverage criterion and test a LeNet-1 trained on MNIST.

Hence, we compare FuzzGAN with benchmarks on LeNet-

1 and MNIST. The evaluation and comparison are made

from three perspectives: image quality, misleading ability and

neuron coverage enhancement. At the end of this section,

we further discuss the improvement of tested DNN with

adversarial retraining.

A. Image Quality

The primary motivation of FuzzGAN is to improve the

image quality of generated test cases. As discussed before,

the critical problems of test cases are distribution deflection

and lack of diversity. Firstly, unrealistic test cases generated

via inflated mutations may be filtered at a pre-processing

stage of a DNN system. It is hard to determine whether an

incorrect classification on such a test case is caused by DNN

vulnerabilities or the deflection of test case distribution. Addi-

tionally, mutation-based test cases are limited to corresponding

seed inputs, impacting the efficiency of covering neurons. In

this subsection, we measure the image quality of test cases

1604

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 20,2023 at 06:48:12 UTC from IEEE Xplore. Restrictions apply.

(a) Original MNIST (b) DeepXplore, blackout (c) DeepXplore, light (d) DeepXplore, occlude (e) Original LSUN

(f) DeepHunter, tensorf (g) DeepHunter, prob (h) CAGFuzz (i) FuzzGAN, MNIST (j) FuzzGAN, LSUN

Fig. 2. Original images and test cases generated by different DNN fuzzers.

generated by FuzzGAN in a qualitative manner and with two

quantitative metrics.

At first, We discuss the reality of test cases in a visualized
manner. We carry out an evaluation with human subjects

to demonstrate the indistinguishability of test cases against

original data. For each of the DNNs trained on MNIST and

LSUN, FuzzGAN learns the representation of its original

inputs and generates test cases with similar representation. We

randomly mix 20 generated images with 20 real images for

each dataset and construct a test set for our subjects. We invite

30 subjects to distinguish which images in the test set are syn-

thetic without telling them the proportion of synthetic images.

For hand-written-digit images, our subjects achieve an average

accuracy of 49.17%, which seems to be randomly guessing.

However, since images in LSUN display natural scenes with

complex structures, our small-sized (64*64) training data are

not enough for the generator in FuzzGAN to perfectly learn the

representation of each scene. The performance of FuzzGAN

on imitating LSUN is slightly weaker than imitating MNIST:

the subjects distinguish the generated images from real ones

with an accuracy of around 57.08%.

Furthermore, we compare the test cases generated by Fuz-

zGAN and benchmark DNN fuzzers with real images sampled

from MNIST and LSUN (shown in Figure 2). Subfigures (a)

and (e) display the real images, and subfigures (i) and (j)

are test cases generated by FuzzGAN. It can be intuitively

found that test cases generated by FuzzGAN (subfigures (i)

and (j)) look strongly like real images (subfigures (a) and (e)).

Compared with the other test cases generated by DeepXplore,

DeepHunter and CAGFuzz, we can conclude that the ones

generated by FuzzGAN are more sharp, clear and realistic.

Additionally, we measure the image quality of generated
test cases with two quantitative metrics. Inception Score

(IS) [26] is a metric for evaluating the generating capability

of a generative model. It focuses on two desirable traits of gen-

erating images: each containing one clear object and having

high diversity. It leads to a large IS if both of these qualities

are satisfied. We calculate IS and compare the dataset MNIST

with test cases generated by FuzzGAN and benchmark fuzzers.

As shown in Table I, the images generated by FuzzGAN

have similar IS as real images, while most of the test cases

generated by other fuzzers are of lower IS. It proves that

FuzzGAN performs well on clarity and diversity.

TABLE I
COMPARISON OF TEST CASES GENERATED FROM THE ORIGINAL MNIST

TEST SET AND DIFFERENT FUZZERS.

Test Cases IS FID Adversarial Rate

MNIST 2.527 0 1.70%

DeepXplore blackout 2.505 32.651 9.60%
DeepXplore light 2.23 100.072 2.70%

DeepXplore occlude 2.227 48.057 4.40%
DeepHunter tensorf 1.84 77.692 8.10%
DeepHunter prob 2.227 65.589 8.07%

CAGFuzz 1.984 63.895 3.60%
FuzzGAN 2.494 63.136 53.50%

Fréchet Inception Distance (FID) [9] is another popularly

metric evaluating generated data. With a pre-trained Inception

network extracting image features, FID measures the distance

between the generated and real images at a feature level.

Rather than IS focusing on clarity and diversity, FID captures

the similarity of images. A low FID corresponds to a similar

distribution of generated images to real images. As shown in

Table I, the test cases generated by FuzzGAN are closer to

the original dataset than the others, except for DeepXplore

techniques with blackout and occlude perturbations.

It is worth noting that one DeepXplore achieves the best

IS and FID among DNN fuzzers. It generates a test case by

occluding a given image with a rectangle of noise (blackout).

Although it has better performance on quantitative metrics, the

images it generated (as shown in Figure 2 (b)) have a quite

significant mark of occlusion and are very easy to recognize.

This situation suggests that current quantitative metrics can

measure the image quality to some extent but still are not

enough to represent the visual difference between images.

B. Misleading Ability

The purpose of evaluating the adversarial robustness of

DNNs is to discover potential vulnerabilities. DNN fuzzing

techniques expose vulnerabilities by leading DNNs to misclas-

sifications with elaborate inputs. The kernel of a DNN fuzzer

is how to generate such adversarial inputs as test cases. A high

probability of generating adversarial input samples always

implies a high test efficiency. We calculate the percentage of

adversarial samples in all samples generated by each DNN

fuzzer. It shows that FuzzGAN has led the tested DNNs to

1605

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 20,2023 at 06:48:12 UTC from IEEE Xplore. Restrictions apply.

TABLE II
NEURON OUTPUT ENHANCEMENT.

Target DNN Output Improvement Activation Improvement

LeNet-1 76.22% 108.90%
VGG-11 42.95% 146.15%

misclassifications at a probability of more than 53.5% for

LeNet-1 (75.5% for VGG-11), which is significantly more

efficient than mutation-based fuzzers (shown in Table I). It is

because the extent of each mutation step applied to the seed

is commonly minute. Mutations are iteratively accumulated

until the generated sample can lead the tested DNN to a mis-

classification. Hence, numerous intermediate samples will be

generated during mutation-based fuzzing. Unlikely, FuzzGAN

generates adversarial input cases directly by a pre-trained

generator. Within the same time, FuzzGAN can generate much

more test cases, which allows FuzzGAN to reach the desired

coverage and terminal the test earlier than mutation-based

fuzzers.

C. Neuron Coverage Enhancement

As introduced in subsection III-B, the generator is designed

to synthesize input samples maximizing the output of the

neuron specified by its input l. In the testing phase, neurons

are specified according to a tracker of neuron coverage.

Firstly, we show that a FuzzGAN-generated data sample can

enhance the output of the specified neuron or even activate

it. We randomly select a set of neurons from each tested

DNN (12 from LeNet-1 and 10 from VGG-11). We separately

select 100 images from MNIST and LSUN as a control group

and use FuzzGAN to generate 100 samples for each selected

neuron as the experimental group. When feeding an image

into a DNN, we record the output (normalized absolute values)

and activation state for its corresponding neuron. We set the

threshold of activation to 0.6. Statistical analysis shows that

the outputs of selected neurons in LeNet-1 with FuzzGAN-

generated samples are larger than that with MNIST images by

approximately 76.22%. For the VGG-11, FuzzGAN effectively

increases the output of selected neurons by around 42.95%.

Furthermore, inputs generated by FuzzGAN averagely activate

108.90% more neurons in LeNet-1 than MNIST and activate

146.15% in VGG-11, seen in Table II.

Secondly, we implement FuzzGAN and observe the neuron

coverage it achieves (shown in Figure 3 and Figure 4). We set

an upper limit on the test suite size (30 for LeNet-1 and 700

for VGG-11) and apply FuzzGAN to test DNNs. As a result,

FuzzGAN achieved a neuron coverage of 98.1% (threshold

t = 0.6) for testing the LeNet-1 and a neuron coverage of

75% (t = 0.4) for testing the VGG-11. Compared with images

from original datasets, FuzzGAN requires less number of test

cases to reach the same neuron coverage. The performance of

FuzzGAN on LeNet for MNIST is also compared with bench-

mark fuzzers (seen in Figure 3). According to our reproduced

results, the advantage of FuzzGAN is not significant enough

but is competitive with existing mutation-based fuzzers.

D. Improving DNN performance

In this subsection, we attempt to eliminate DNN vulnerabili-

ties with the test cases that discover them. Test case generation

of DNN fuzzing always has a requirement on test coverage.

Taking neuron coverage as an example, we intuitively assume

that the vulnerability uncovered by a test case can be attributed

to the neurons it activates. Therefore, DNN fuzzing not only

exposes adversarial vulnerabilities but also locates them.

Taking advantage of the adversarial retraining technique [7],

we retrain the tested DNNs. We add 2000 adversarial examples

into the original training set for each DNN. The DNNs are then

retrained on augmented training sets for 5 epochs. Figure 5

shows the growth trends of the accuracy of retrained models on

their test sets. We compared the performance of newly trained

networks and previous networks with test sets containing 1000

test cases and 2000 real samples. As a result, the retrained

LeNet-1 and VGG-11 networks achieved 37.12% and 23.70%

higher accuracy on mixed test sets. It illustrates that test cases

generated by FuzzGAN are effective for improving test DNN

by fixing erroneous behaviours to some extent.

VI. RELATED WORK

Besides fuzzing, other testing techniques such as concolic

testing [29], [30] and combinatorial testing [19] have also

been used in testing DNNs. Table III chronologically compare

FuzzGAN with existing DNN testing techniques from three

perspectives: The column Neuron Coverage presents whether

neuron coverage is employed to measure testing adequacy;

the column Generation Type shows the basic method used for

generating test cases; the column Test Oracle lists how the

correctness of tested DNNs is determined.

Firstly, FuzzGAN uses neuron coverage to measure testing

adequacy as the most relevant work. According to the charac-

teristics of DNNs, existing test coverage criteria for traditional

software are insufficient for DNNs. Many new criteria have

been proposed specifically for testing DNNs. Pei et al. [25]

introduced neuron coverage for measuring the adequacy of

DNN testing. Then, several recent works further discussed the

output of neurons and proposed delicately tailored test cov-

erage criteria, such as neuron bound coverage [20], sign-sign

coverage [29] and t-way combination sparse coverage [19].

Among all criteria, neuron coverage is the most fundamental

and popularly used in DNN testing techniques.

Secondly, FuzzGAN proposes a novel test case genera-

tion method different from current mutation-based testing

techniques. For example, DeepXplore [25] and DeepBill-

board [39] generate test cases with constrained perturbations.

DeepTest [32], DeepHunter [34], DeepSmartFuzzer [4] and

Sensei [6] utilize image transformations. DeepGauge [20],

DeepGini [5] and RobOT [33] take advantage of existing

adversarial attacks (e.g. Jacobian-based Saliency Map Attack

(JSMA) [24] and Carlini and Wagner attack (C&W) [3]).

DeepConcolic [30] and DeepCover [29] formalize cover-

age criteria and adopt symbolic analysis to mutate seed

inputs. TensorFuzz [22], DeepCT [19], DLFuzz [8] and

Test4Deep [36] propose optimization algorithms to generated

1606

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 20,2023 at 06:48:12 UTC from IEEE Xplore. Restrictions apply.

5 10 15 20 25 30
The Number of Test Cases

0.5

0.6

0.7

0.8

0.9

1.0

N
eu
ro
n
C
ov
er
ag
e

Real

Light(DeepXplore)

Occlude(DeepXplore)

Blackout(DeepXplore)

CAGFuzz

FuzzGAN

Fig. 3. Comparison of test cases obtained from
different fuzzers and MNIST dataset in increasing
the neuron coverage of target LeNet-1.

100 200 300 400 500 600 700
The Number of Test Cases

0.50

0.55

0.60

0.65

0.70

0.75

0.80

N
eu
ro
n
C
ov
er
ag
e

Real

FuzzGAN

Fig. 4. Comparison of test cases obtained from
FuzzGAN and LSUN dataset in increasing the
neuron coverage of target VGG-11.

1 2 3 4 5
The Number of Retraining Epochs

0.90

0.92

0.94

0.96

0.98

1.00

A
cc
ur
ac
y

LeNet-1

VGG-11

Fig. 5. Improvement in accuracy by retraining
DNN models with test cases.

perturbations for test case generation. DeepMutation [21]

mutates a target model rather than seed inputs.

To mitigate the influence of the image quality of test cases

on DNN performance, DeepRoad [37] and CAGFuzz [38]

adopt GANs to generate realistic test cases. They are similar

to FuzzGAN, while the GANs they use are trained for image-

to-image translation. According to DeepRoad and CAGFuzz,

the test cases generated with GANs are more realistic than

the cases generated by other mutations. However, image

translation is still a kind of mutation in which a new image

is generated from a given seed. Therefore, they still have a

problem with the diversity of test cases. It’s worth noting that

DeepRoad does not consider coverage criterion, and CAGFuzz

filters test cases based on the neuron coverage after generation.

At last, FuzzGAN provides a new test oracle. In existing

testing techniques, test cases are mutated from seed inputs,

so the predictions on test cases are related to the label

of corresponding seed inputs. For example,DeepGauge [20]

evaluates the predictions of a tested DNN on test cases by

the labels of corresponding seed inputs. DeepTest [32] and

DeepHunter [34] utilize transformation-specific metamorphic

relations between test cases and seed inputs, and DeepGini [5]

analyzes misclassification likelihood. Additionally, DeepX-

plore [25] requires multiple DNNs with the same functionality

as a cross-reference oracle. Unlike existing techniques, Fuz-

zGAN employs ACGAN to generate data cases under given

class labels which are used as test oracle.

Besides evaluating the robustness of DNNs, there exists

a wide range of other attacks, defenses and applications in

machine learning domain [14]–[18]

VII. CONCLUSION

To mitigate the impact of the limited diversity and distri-

bution deflection of mutation-based test cases, we propose a

generation-based fuzzing framework FuzzGAN. It generates

realistic, diverse and misleading test cases with the aid of

ACGAN technique rather than applying mutations to given

seeds as a mutation-based fuzzing. We guide the test case

generation by neuron coverage and provide a valid test oracle

for FuzzGAN.

To our knowledge, FuzzGAN is the first generation-based

fuzzing framework for testing DNNs. We have implemented

it to test a LeNet-1 on MNIST and a VGG-11 on LSUN. The

results show that the test cases generated by FuzzGAN are

realistic enough to confuse humans and have comparable IS

and FID scores with those generated by other DNN fuzzers.

Our test cases can enhance neuron coverage by improving

the output of specified neurons and lead the tested DNNs to

misclassifications at a much higher probability. Moreover, we

show that the test cases generated by FuzzGAN are helpful in

eliminating vulnerabilities by retraining tested DNNs.

REFERENCES

[1] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An Industrial Evaluation of Unit Test Generation: Finding Real Faults
in a Financial Application,” in International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP).
IEEE, 2017, pp. 263–272.

[2] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, 2014.

[3] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE Symposium on Security and Privacy (S&P). IEEE,
2017, pp. 39–57.

[4] S. Demir, H. F. Eniser, and A. Sen, “DeepSmartFuzzer: Reward Guided
Test Generation For Deep Learning,” CoRR abs/1911.10621, 2019.

[5] Y. Feng, Q. Shi, X. Gao, J. Wan, and C. Fang, “DeepGini: prioritizing
massive tests to enhance the robustness of deep neural networks,” in
International Symposium on Software Testing and Analysis (SIGSOFT).
ACM, 2020, p. 177–188.

[6] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz
Testing based Data Augmentation to Improve Robustness of Deep
Neural Networks,” in International Conference on Software Engineering
(ICSE). IEEE, 2020, pp. 1147–1158.

[7] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. Mc-
Daniel, “On the (statistical) detection of adversarial examples,” CoRR
abs/1702.06280, 2017.

[8] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential
fuzzing testing of deep learning systems,” in ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 2018, pp.
739–743.

1607

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 20,2023 at 06:48:12 UTC from IEEE Xplore. Restrictions apply.

TABLE III
COMPARISON OF ROBUSTNESS TESTING TECHNIQUES FOR DNNS.

Testing
Technique

Neuron
Coverage

Generation
Type

Test
Oracle

DeepXplore [25]
√ constrained

perturbation
cross-

referencing

DeepTest [32]
√ image

transformation
metamorphic

relation

DeepGauge [20]
√ adversarial

perturbation
self-

referencing

DeepMutation [21] × model
mutation

self-
referencing

DeepRoad [37] × image
translation

metamorphic
relation

DeepBillboard [39] × constrained
perturbation

self-
referencing

DeepConcolic [30]
√ symbolic

mutation
self-

referencing

DeepCover [29]
√ symbolic

mutation
self-

referencing

TensorFuzz [22]
√ optimized

perturbation
numerical

error

DeepCT [19] × optimized
perturbation

self-
referencing

DLFuzz [8]
√ optimized

perturbation
self-

referencing

DeepHunter [34]
√ image

transformation
metamorphic

relation

DeepSmartFuzzer [4]
√ image

transformation
self-

referencing

Sensei [6]
√ image

transformation
self-

referencing

DeepGini [5] × adversarial
perturbation

error
likelihood

RobOT [33] × adversarial
perturbation

self-
referencing

CAGFuzz [38]
√ image

translation
self-

referencing

Test4Deep [36]
√ optimized

perturbation
self-

referencing

FuzzGAN
√ image

generation
specified in
generation

[9] M. Heusel, H. R. andThomas Unterthiner, B. Nessler, G. Klambauer,
and S. Hochreiter, “GANs Trained by a Two Time-Scale Update Rule
Converge to a Nash Equilibrium,” CoRR abs/1706.08500, 2017.

[10] A. Jabbar, X. Li, and B. Omar, “A Survey on Generative Adversarial
Networks: Variants, Applications, and Training,” in Computing Surveys.
ACM, 2021, p. 1–49.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, pp. 2278–
2324, 1998.

[12] Y. LeCun and C. C. C. J. Burges, “The MNIST database of handwritten
digits,” http://yann.lecun.com/exdb/mnist/.

[13] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, 2018.

[14] Z. Li, G. Han, S. Guo, and C. Hu, “Deepkeystego: Protecting commu-
nication by key-dependent steganography with deep networks,” in 2019
IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2019, pp. 1937–1944.

[15] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to Prove Your Model Belongs
to You: A Blind-Watermark based Framework to Protect Intellectual
Property of DNN,” in Annual Computer Security Applications Confer-
ence (ACSAC). ACM, 2019, pp. 126–137.

[16] Z. Li, Y. Liu, X. He, N. Yu, M. Backes, and Y. Zhang, “Auditing Mem-
bership Leakages of Multi-Exit Networks,” in ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 2022.

[17] Z. Li, N. Yu, A. Salem, M. Backes, M. Fritz, and Y. Zhang, “Un-

GANable: Defending Against GAN-based Face Manipulation,” CoRR
abs/2210.00957, 2022.

[18] Z. Li and Y. Zhang, “Membership Leakage in Label-Only Exposures,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 2021, pp. 880–895.

[19] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:
Tomographic combinatorial testing for deep learning systems,” in Inter-
national Conference on Software Analysis, Evolution,and Reengineering
(SANER). IEEE, 2019, pp. 614–618.

[20] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu, Z. Jianjun, and W. Yadong, “Deepgauge: Multi-granularity
testing criteria for deep learning systems,” in International Conference
on Automated Software Engineering (ASE). IEEE, 2018, pp. 120–131.

[21] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, “DeepMutation: Mutation Testing of
Deep Learning Systems,” in IEEE International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2018, pp. 100–111.

[22] A. Odena and I. Goodfellow, “Tensorfuzz: Debugging neural networks
with coverage-guided fuzzing,” CoRR abs/1807.10875, 2018.

[23] A. Odena, C. Olah, and J. Shlens, “Conditional Image Synthesis with
Auxiliary Classifier GANs,” in International Conference on Machine
Learning (ICML). PMLR, 2017, pp. 2642–2651.

[24] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2016, pp. 372–387.

[25] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in ACM Symposium on Operating
Systems Principles (SOSP). ACM, 2017, pp. 1–18.

[26] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Annual Conference
on Neural Information Processing Systems (NeurIPS). MIT Press, 2016,
pp. 2234–2242.

[27] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, 2015.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR abs/1409.1556, 2014.

[29] Y. Sun, X. Huang, and D. Kroening, “Testing deep neural networks,”
CoRR abs/1803.04792, 2018.

[30] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,
“Concolic testing for deep neural networks ,” in International Confer-
ence on Automated Software Engineering (ASE). IEEE, 2018, pp. 109–
119.

[31] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” CoRR
abs/1312.6199, 2013.

[32] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in International Confer-
ence on Software Engineering (ICSE). IEEE, 2018, pp. 303–314.

[33] J. Wang, J. Chen, Y. Sun, X. Ma, D. Wang, J. Sun, and P. Cheng,
“RobOT: Robustness-Oriented Testing for Deep Learning Systems,” in
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1558–1225.

[34] X. Xie, L. Ma, F. Juefei-Xu, H. Chen, M. Xue, B. Li, Y. Liu, J. Zhao,
J. Yin, and S. See, “Coverage-guided fuzzing for deep neural networks,”
CoRR abs/1809.01266, 2018.

[35] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “LSUN:
Construction of a large-scale image dataset using deep learning with
humans in the loop,” CoRR abs/1506.03365, 2015.

[36] J. Yu, S. Duan, and X. Ye, “A White-Box Testing for Deep Neural Net-
works Based on Neuron Coverage,” Transactions on Neural Networks
and Learning Systems (TNNLS), 2022.

[37] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:
GAN-based metamorphic testing and input validation framework for
autonomous driving systems,” in International Conference on Automated
Software Engineering (ASE). IEEE, 2018, pp. 132–142.

[38] P. Zhang, B. Ren, H. Dong, and Q. Dai, “CAGFuzz:Coverage-Guided
Adversarial Generative Fuzzing Testing for Image-based Deep Learning
Systems,” Transactions on Software Engineering (TSE), 2021.

[39] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and C. Liu,
“Deepbillboard: Systematic physical-world testing of autonomous driv-
ing systems,” CoRR abs/1812.10812, 2018.

1608

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 20,2023 at 06:48:12 UTC from IEEE Xplore. Restrictions apply.

