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ABSTRACT

Generative Adversarial Networks (GANs) have become
widely used in model training, as they can improve per-
formance and/or protect sensitive information by generating
data. However, this also raises potential risks, as malicious
GANs may compromise or sabotage models by poisoning
their training data. Therefore, it is important to verify the
origin of a model’s training data for accountability purposes.
In this work, we take the first step in the forensic analysis
of models trained on GAN-generated data. Specifically, we
first detect whether a model is trained on GAN-generated or
real data. We then attribute these models, trained on GAN-
generated data, to their respective source GANs. We conduct
extensive experiments on three datasets, using four popular
GAN architectures and four common model architectures.
Empirical results show the remarkable performance of our
detection and attribution methods. Furthermore, we conduct
a more in-depth study and reveal that models trained on var-
ious data sources exhibit different decision boundaries and
behaviours.

Index Terms— Generative Adversarial Networks (GANS),
GAN:-trained models, forensic analysis, accountability

1. INTRODUCTION

Deep learning has become a vital tool for various domains,
such as business, healthcare, industries, and military [1]. Its
rapid growth and wide-ranging applications depend on the
availability of abundant data [2]. However, data collected in
the real world are small, dirty, biased and even poisoned [3].
Furthermore, data collection and usage are subject to legal
restrictions such as GDPR [4] and DPIA [5]. These issues
have motivated research on generative methods, especially
Generative Adversarial Networks (GANs). GANSs can learn
the distributions of target datasets and generate new data.
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Fig. 1: An illustration of our work.

Therefore, they can overcome the limitations of scarce train-
ing data. Notably, leading companies like Google, Intel, and
NVIDIA have adopted synthetic data from providers such as
MostlyAl [6], Datagen [7], YData [8], and Bitext [9] to train
their deep learning models.

Using GAN-generated data to train models can introduce
serious and realistic threats. Malicious GANs can create
harmful data, either passively or actively. Models trained
on such data can pose accountability risks for the owner,
as they may be involved in malicious activities related to
their models. For example, GANs can generate poisoning
data that degrades model robustness, leading to significant
performance drop [10, 11]. Moreover, GAN-generated data
can embed backdoors that can trigger unwanted model out-
puts [12]. Several forensic techniques can trace the source
of generated data, addressing the concerns about its qual-
ity [13, 14, 15, 16, 17, 18]. However, these techniques only
work at the data level. No previous work focuses on the
model level, i.e., the models trained on GAN-generated data.

Contributions. This paper fills this gap by conducting the
first study on detecting and attributing models trained on
GAN-generated data, as shown in Fig. 1. Specifically, we
aim to answer the following research questions (RQs):

* RQ1. Can we distinguish models trained on GAN-
generated data from those trained on real data, i.e., can
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we detect GAN-trained models?

* RQ2. Can we link models trained on generated data
to the source GANs that created their training data,
i.e., can we attribute these models to their training data
sources?

To address the distinction between models trained on
GAN-generated and real data (RQ1), we construct a binary
classifier, termed the detector. We initiate this process by
training surrogate models separately using data generated by
multiple GANs alongside real data. Subsequently, we input
a fixed probing set into each surrogate model and label the
resultant output as either “real” or “GAN.” We combine all
labelled model outputs into a dataset that functions as the
training set for the detector. Following training, the detec-
tor can ascertain whether a given target model is trained on
GAN-generated data.

Upon identifying a model as being trained on GAN-
generated data, we proceed to attribute it to the specific GAN
accountable for generating its training data (RQ2). We ex-
plore two scenarios: closed-world attribution and open-world
attribution. In the former, the goal involves pinpointing the
origin of the target model’s training data from a finite set of
potential GANs. To achieve this, we construct an attributor
functioning as a multi-class classifier. This attributor employs
the target model’s output to predict the GAN responsible for
the data. Conversely, in the open-world scenario, we relax
the assumption that the attributor has access to all potential
GANs. In this case, we introduce a binary classifier as the
attributor. This classifier is designed to establish the rela-
tionship between the target model and each suspected GAN,
offering enhanced flexibility.

Our investigation encompasses extensive experiments
across three image datasets, four prominent GANSs, and four
widely-used CNN architectures'. Empirical findings under-
score the impressive performance of both our detector and
attributor.

2. GAN-TRAINED MODEL DETECTION

In this section, we present our detection for whether models
have been trained on GAN-generated data or not (RQ1).

2.1. Design Goals

To tackle the threats posed by training models on GAN-
generated data, the design of our detector should effectively
distinguish between models trained on generated data and
those on real data. We refer to these models as “Target Mod-
els.”

Uhttps://github.com/G3H4N/GAN-Trained-Model-Detection-and-
Attribution

2.2. Methodology

To this end, we build a detector by training a binary classifier.
The design of our detector encompasses three stages: Surro-
gate Model Construction, Dataset Construction, and Detector
Construction.

* Surrogate Model Construction. Initially, the real
dataset is partitioned into three parts: training set,
testing set, and probing set. We proceed by training
multiple GAN models using diverse subsets randomly
sampled from the training set. This results in a col-
lection of data sources, comprising GAN-generated
data and the original training set. For each source,
we train numerous classification models, referred to as
surrogate models.

* Detector Dataset Construction. We use the probing
set to query these surrogate models and label the out-
puts of models trained on GAN-generated/real data as
0/1. Subsequently, we build a binary dataset tailored to
the detectors.

* Detector Construction. Employing classical training
techniques, we train the detector from scratch using the
binary dataset.

Once the detector has been trained, we subject the test-
ing set to the above second stage to feed the probing set to
the target models trained from other GANSs or real data to ob-
tain an independent binary dataset. Finally, we evaluate the
generalizability of the detector using this new binary dataset.

2.3. Experimental Setup

Datasets and GAN Architectures. We consider three classi-
fication image datasets: CelebA [19], Fashion-MNIST (FM-
NIST) [20], and SVHN [21]. Table 1 shows the dataset
partition setting. We consider four popular conditional
GAN architectures, namely, CGAN [22], DCGAN [23],
ACGAN [24], and WGAN [25]. The reason is that they
can generate images based on corresponding labels, enabling
training classification models in a supervised way. Further-
more, we train 40 GAN models, with each GAN architecture
contributing 10 instances.

Target/Surrogate Model Architecture. We use ResNet-18,
a representative CNN model, as the target model. Since we
assume we only have black-box access to the target model, we
use a different CNN model, VGG-9, as the surrogate model.
To evaluate GAN-trained model detection, we divide the real
training set into two equal portions. One portion is utilized
alongside 20 GANSs to train surrogate models and create the
dataset for training the detector. Simultaneously, the other
half of the real training set, in conjunction with the other 20
GAN:S, is employed to train models acting as target models,
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Table 1: The Dataset Partition Setting.

Dataset  Training Set  Testing Set  Probing Set ~ Subset
CelebA 192499 10000 100 100000
FMNIST 59900 10000 100 50000
SHVN 73257 25932 100 70000

Table 2: The Accuracy of Model Detection.

Dataset  Detector I  Detector I Detector III

CelebA 0.705 0.948 0.933
FMNIST 0.691 0.926 0.850

SVHN 0.689 0.942 0.915

forming the dataset for testing the detector. For each source,
we train 20 classifiers as the surrogate/target models.

Detector. We construct the detector as a 2-layer MLP, where
the input dimension aligns with the binary dataset’s data size,
and the output layer’s dimension is set at 2. We consider three
detectors, namely Detector I, II, and III. For each detector, we
construct the binary dataset with different information related
to model output, including posterior alone for Detector I, pos-
terior along with an additional 1/0 label indicating prediction
correctness for Detector II, and posterior combined with la-
bels from the probing set for Detector III.

2.4. Results

We present the detection accuracy in Table 2. Notably, our
detectors demonstrate impressive performance. The highest
accuracy is achieved on CelebA, reaching up to 94.8%, while
the lowest is observed for SVHN, still exceeding 68.9%.
These results verify that models trained on GANs exhibit dis-
tinct behaviours when compared to those trained on real data.
In essence, these models are capable of revealing information
about their training data.

Moreover, Detector II attains the highest accuracy. This
observation suggests that beyond the posterior, the additional
1/0 label indicating prediction correctness can further en-
hance the detection performance. The reason is that the cor-
rectness judgement leaks more information involving model
behaviour for detection.

3. GAN-TRAINED MODEL ATTRIBUTION

3.1. Design Goals

The primary goal of GAN-trained model attribution is to ef-
fectively attribute different models trained on GAN-generated
data to their source GANs. The purpose of attribution is to
hold the GAN owners accountable for the possible misbe-
haviour of the models trained on their generated data.
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Fig. 2: The visualization of decision boundaries for VGG-
9 classifiers trained from different data sources, including the
real Fashion-MNIST dataset and 4 GANs with different archi-
tectures. The coloured areas display how each classifier sepa-
rates the input space into 10 classes; the right-most colour bar
shows the colour corresponding to each class. The data points
in each sub-figure are ten fixed test samples, and the number
next to each point is its true label.

3.2. Methodology

To reach our goal, we create an attributor through a classi-
fier, which involves three main stages: Surrogate Model Con-
struction, Dataset Construction, and Attributor Construction.
Additionally, we consider two attribution scenarios: Closed-
World Attribution and Open-World Attribution.

Closed-World Attribution.. In this scenario, the attributor
has access to all candidate GANs. Among these GANs, the
attributor’s objective is to determine which GAN’s generated
data the target model has been trained on.

* Surrogate Model Construction. Initially, we train
multiple GAN models (i.e., candidate GANs) using di-
verse subsets randomly sampled from the real dataset.
This process results in a collection of data sources,
resulting in data generated by various GANs. For each
source, we train multiple classification models, referred
to as surrogate models.

 Attributor Dataset Construction. We use the prob-
ing set partitioned from the real dataset to query all
surrogate models, assigning the same class labels to
output from surrogate models trained on the same
GAN. Concretely, we label the output from a surrogate
model trained on CGAN_0/CGAN_1/../WGAN_9 as
0/1/.../39, respectively. Thus, we build a multi-class
dataset for training the attributor.

Attributor Construction Employing classical training
techniques, we train the attributor from the ground up
using the multi-class dataset.

To assess the attributor, we first use these candidate GANs
to generate new datasets to train multiple target models. Next,
we feed the same probing set into the target models to con-
struct an independent multi-class dataset. Finally, we evaluate
the attributor’s generalizability using this dataset.

Open-World Attribution. In this scenario, the attributor
only accesses a subset of GANs. Even when faced with a
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new GAN that the attributor has never seen before, it can still
determine if the given GAN generated the data that the target
model has been trained on. That is, this is a more realistic
and challenging scenario. Since most stages are the same as
those of Closed-World Attribution, we only present the dif-
ferent parts here.

* Surrogate Model Construction. We use part of GANs
to train surrogate models.

¢ Attributor Dataset Construction. We employ each
accessible GAN to generate a small dataset, serving
as a probing set. We query all surrogate models us-
ing each probing set, labelling the output as 1 if the
GAN that generated the probing set also generated the
queried model’s training data; otherwise, labelling it as
0. Consequently, we build a binary dataset for training
the attributor.

We use the models trained from the other GANs to assess
the attributor. We query the target models using probing sets
generated by each GAN and combine their output into an in-
dependent binary dataset. Finally, we evaluate the attributor’s
generalizability using this dataset. Note that the GANs, along
with the target model trained on these GANS, have never been
encountered by the attributor.

3.3. Experimental Setup

Most of the experimental setup is the same as that in Section
3.3. Here, we only highlight that in the open-world attribu-
tion, we use 80% (32) of GANSs to build the attributor and
reserve the remaining 20% (8) GAN models for evaluation.

3.4. Results

Closed-World Attribution. Table 3 presents the perfor-
mance of our closed-world model attribution. For each of the
CelebA, Fashion-MNIST, and SVHN datasets, our method
has achieved the ability to distinguish classifiers trained from
any GAN with an accuracy of up to 87.3%. These results
demonstrate that GAN-identifying information retained in
classifiers remains distinctive, regardless of variations in ar-
chitectures, loss functions, or training sets among the GANSs.

Open-World Attribution. As demonstrated in Table 4, our
attributor achieves the highest accuracy of 97.4% for Fashion-
MNIST and the lowest accuracy of 75.4% for SVHN. These
results indicate our attributor’s ability to link a model to the
GAN generating its training data, even though our attributor
has never seen these GANs and models.

4. WHY DETECTION AND ATTRIBUTION WORK

In this section, we delve deeply into the reasons behind the
effectiveness of our detection and attribution techniques.

Table 3: The Accuracy of Closed-World Model Attribution.

Dataset  Attributor I~ Attributor II  Attributor III
CelebA 0.649 0.629 0.851
FMNIST 0.589 0.569 0.860

SVHN 0.640 0.625 0.873

Table 4: The Accuracy of Open-World Model Attribution.

Dataset  Attributor I ~ Attributor Il Attributor III

CelebA 0.871 0918 0.955
FMNIST 0.912 0.974 0.967

SVHN 0.754 0.791 0.820

Specifically, our focus is on examining the decision boundary
of the model.

The decision boundary is a crucial aspect of a model’s
behaviour. It is determined by the learned parameters and
weights of the model during the training process and is es-
sential for making predictions or assigning labels to unseen
or test data. Importantly, the shape, position, and complexity
of the decision boundary are directly influenced by the train-
ing data. This means that the decision boundary is intimately
connected to the training data’s intrinsic characteristics and is
a direct reflection of the training data.

To illustrate the concept of the decision boundary, we fed
a probing set to five models: one trained on real data and
four others trained on CGAN/ACGAN/DCGAN/WGAN gen-
erated data, respectively. We then embedded their outputs into
a 2D space using t-SNE. As depicted in Fig. 2, the decision
boundary of the model trained on real data notably contrasts
with those of models trained using different GANs. This ob-
servation helps explain why our detection methods can suc-
cessfully distinguish between them. Furthermore, we also
notice that models trained from different GANs exhibit dis-
tinct decision boundaries, which provides insights into why
our attributor can successfully distinguish between them.

5. CONCLUSION

In this paper, we pioneer a systematic exploration into detect-
ing and attributing models trained on GAN-generated data.
Specifically, we construct a classifier to differentiate models
trained on real versus GAN-generated data. Subsequently,
we establish connections between models trained on GAN-
generated data and their original source GANs. This attribu-
tion process allows GAN owners to be held accountable for
any misbehaviour exhibited by these models. Our research
encompasses extensive experiments and the empirical results
underscore the remarkable performance of our detection and
attribution methods. Furthermore, we delve deeper to reveal
that models trained on different sources, e.g., real data or
GAN:Ss, exhibit distinct decision boundaries and behaviours.
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