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Abstract—Deep learning models, pivotal in Al applications,
are susceptible to model hijacking attacks. In model hijacking
attacks, adversaries can misuse models for unintended tasks,
shifting blame and maintenance costs onto the models’ deployers.
Existing attack methods re-purpose target models by poisoning
their training sets during training. However, leading models
like GPT-4 and BERT with vast parameters are often pruned
before deployment on resource-limited devices, which presents
challenges for in-training attacks, including existing model hi-
jacking attacks. In this paper, we propose PRJack, the first
pruning-resistant hijacking attack. Specifically, the adversary re-
purposes a model to perform a hijacking task different from
the original task, which can still be activated even after model
pruning. Our experiments across multiple datasets and pruning
techniques highlight PRJack’s remarkable superiority on pruned
models over existing model hijacking attacks.

Index Terms—deep learning models, model hijacking attack,
model pruning, image classification, Al security

I. INTRODUCTION

Deep Learning models, at the core of Al technology, play
pivotal roles across various domains [1]. As their importance
grows, the security landscape has become intricate, leading to
global legislative initiatives [2]-[5] aimed at regulating model
behavior and preventing misuse. Despite these measures, re-
cent research has unveiled the vulnerability of deep learning
models to various attacks [6], [7], such as inference attacks,
model stealing attacks, adversarial attacks, poisoning attacks,
etc. Within this evolving threat landscape, a new attack has
emerged: model hijacking attack.

Model hijacking attacks involve adversaries re-purposing
models for unintended tasks, which introduce accountability
and parasitic computing risks, and shift responsibility and costs
to deployers. Exiting model hijacking attack methods [8], [9]
typically occur during the training phase of the target model.
Specifically, as displayed in Figure 1a, they re-purpose a model
by poisoning its original training data with data related to the
hijacking task. This modification of training data allows the
model to handle inputs from both the original and hijacking
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domains, creating a potential avenue for unauthorized or
unintended uses.

However, the efficacy of current model hijacking attack
methods may experience a decline in specific real-world
scenarios, particularly those involving model pruning. This
is especially relevant for leading models like GPT-4 [10],
which comprise trillions of parameters, posing challenges for
deployment on resource-constrained devices such as mobile
phones or IoT devices [11]. In the context of model pruning,
a pre-trained large-scale model is often made available to the
public or users through platforms like HuggingFace, GitHub,
and ModelZoo [12]. These platforms provide open access for
downloading pre-trained models, catering to both academic
and industrial domains. Users with resource constraints can
download and compress the large model using pruning tech-
niques before deploying on their terminals.

The model pruning process poses new problems for existing
model hijacking attacks, as depicted in Figure 1b. Model
hijacking attacks often focus on the pruned model deployed in
real-world scenarios. This deployed model usually operates as
a black box, preventing adversaries from directly intervening
in its training or manipulating its parameters. Therefore, to
achieve the desired hijacking effect, adversaries can only focus
on the original large-scale model before any pruning takes
place. Additionally, the pruning process changes the model’s
structure and parameters, which potentially diminishes the
effectiveness of in-training attacks [13]-[16], specifically for
existing model hijacking attack methods. The model pruning
process typically involves reducing the size of a pre-trained
model by eliminating non-essential neurons and fine-tuning
the remaining parameters to maintain functionality. In reality,
adversaries often lack the authority to engage in the pruning
process of the deployed model. Consequently, the fine-tuning
in the pruning process uses clean data intended for the original
task. This can override the effects previously achieved through
training with hijacked data, thereby nullifying the impact of
model hijacking attacks initiated during the training phase.

In this work, we extend the applicability of the model
hijacking attack to the model pruning scenarios. Specifically,
we introduce a new attack strategy: PRJack, a pruning-
resistant model hijacking attack. In this attack, the adversary
re-purposes a model to perform a hijacking task, which can
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(b) The impact of model pruning on exiting model hijacking attacks.

Fig. 1: Existing model hijacking attacks are unsuitable for
scenarios involving model pruning.

still be activated even after model pruning. Specifically, the
adversary first relabels hijacking samples from the hijacking
dataset by assigning new labels from the original dataset to re-
duce the incompatibility between the hijacking dataset and the
original dataset. Then, the adversary applies a simple neural
network (called Transformer) that accepts hijacking samples
as input and outputs transformed samples. The transformer
adapts hijacking samples to better align with the original
samples, thus bypassing the impact of the pruning procedure.
We conduct extensive evaluations and the empirical results
show that our attack has excellent performance. In particular,
our attack achieves a significantly higher Attack Success Rate
compared to existing model hijacking attacks.
Summarily, the main contributions of this paper are:

1) We introduce a new threat model to broaden the scope of
model hijacking attacks to the context of model pruning.
In this model, an adversary can hijack the target model
both before and after pruning, without intervening in its
training or having insights into the pruning process.

2) We propose PRJack, the first pruning-resistant model
hijacking attack against deep learning models. This
attack is executed during the model’s inference phase
by mapping the hijacking task onto the original task
before model execution. It ensures the model’s ability
to perform the hijacking task even after the model un-
dergoes pruning, meaning that the attack effects remain
unaffected by pruning.

3) We implement PRJack on image classification models
over six benchmark datasets, which verifies the effec-
tiveness of PRJack and its resistance to five popularly
used pruning techniques.

II. RELATED WORK
A. Model Hijacking Attacks

In machine learning security, model hijacking attacks pose
a persistent threat, allowing adversaries to re-purpose models
without the owner’s knowledge. This form of attack exempli-
fies the vulnerability of models during their training phase,
underscoring the need for robust defensive mechanisms

Initial research [8] on computer vision-based models intro-
duced the Naive hijacking attack, which repurposes models
by directly incorporating a hijacking dataset into the training
data. Building upon this, Chameleon Attack and Adverse
Chameleon Attack were developed. These attacks utilize an
encoder-decoder model named the Camouflager to disguise
the hijacking dataset, making it visually similar to the original
dataset while preserving the semantics of the hijacking task.
Additionally, the Adverse Chameleon Attack introduces an
Adverse Semantic Loss to boost hijacking effectiveness. Both
Chameleon Attack and Adverse Chameleon Attack show high
attack success rates in hijacking while minimally impacting
the original model’s utility.

The Naive hijacking attack, despite its simplicity, is more
detectable than the Chameleon attacks due to clear differences
between the original and hijacking datasets. It represents an
upper bound for Attack Success Rate, as it uses unmodified
hijacking samples, trading off stealth for effectiveness. Thus,
we evaluate our proposed model hijacking attack, PRJack,
against the Naive hijacking attack as a benchmark.

Broadening the scope of model hijacking attacks, a study
introduces the Ditto attack. Akin to Chameleon attacks, the
Ditto attack poisons text generation models’ training sets with
transformed hijacking data. It enables the re-purposing of text
classification models for various generation tasks like language
translation, text summarization, and language modeling.

B. Pruning Techniques and Security Implications

Model pruning is a technique in deep learning that optimizes
neural network models by reducing their size and complexity
while maintaining or improving their performance. It’s used to
make models more efficient for resource-constrained devices,
like mobile or edge devices, and has proven effective in var-
ious tasks [17]. Typically, model pruning is performed using
criteria like weight magnitudes or activation values to identify
and prune less essential neurons. By removing neurons that
have minimal impact on performance [18], pruning effectively
lowers the model’s computational burden. Furthermore, if
the pruned model undergoes fine-tuning or retraining, it can
potentially break free from previous local minima [19] and
further enhance the model’s accuracy.

Model pruning techniques can be unstructured, where indi-
vidual neurons are removed independently [20], or structured,
where entire channels [21], [22], or filters [23] are eliminated
while maintaining the network’s architecture. Basic pruning
techniques generate masks for each pruning target to achieve
a predetermined sparsity ratio. On the other hand, scheduled
pruning techniques determine how to allocate the sparsity ratio
to each pruning target and handle fine-tuning logic [24]-[27].



While the benefits of model pruning, such as enhanced
inference speed and reduced memory usage, have been ex-
tensively explored, there is a growing recognition of its
security implications. Studies have demonstrated that model
pruning serves as a powerful regularization technique, ef-
fectively mitigating overfitting [28], [29], which not only
enhances generalization but also bolsters the model’s resilience
against various adversarial attacks [30]-[32]. Moreover, model
pruning’s role in privacy protection has been explored [33],
with novel algorithms developed to defend against member-
ship inference attacks [34]. Additionally, model pruning has
emerged as a potent defence mechanism against in-training
attacks that manipulate model behaviour through corrupted
training data. Specifically, Zhao and Lao demonstrated that
pruning increases the complexity of executing a successful
poisoning attack [13], and several pruning algorithms have
been introduced to remove embedded backdoors in neural
network models [14]-[16].

III. PRUNING-RESISTANT MODEL HIJACKING ATTACK
A. Threat Model

PRJack targets scenarios in which the target model un-
dergoes post-training pruning before deployment. The farget
model refers to a publicly available pre-trained model and
serves as the specific model upon which the adversary executes
the attack. A model deployer downloads and prunes it for
deployment on a resource-constrained device. The adversary
aims to enable this pruned target model, which is finally
deployed, to perform a specified task, i.e., the hijacking task.
Concretely, the adversary has the following objectives:
Objective 1. Upholding the performance of the pruned target

model on their original task;
Objective 2. Having the pruned target model perform the

hijacking task effectively;
Objective 3. Keeping the hijacking data input to the pruned

target model recognizable, facilitating the adversary’s frame-
up intent to implicate the model deployer.

Initially, concerning the original target model, the adversary
lacks the authority to intervene in its training process or
manipulate the parameters post-training. However, similar to
the model deployer, the adversary possesses white-box access
and has the capability to prune the model. Furthermore, The
adversary is ignorant of the pruning process employed by
the model deployer, such as the pruning technique, pruning
ratio, and the number of fine-tuning epochs. Subsequently,
the adversary only has black-box access to the final deployed
model, i.e., the pruned target model. Besides, the adversary
possesses a dataset relevant to the hijacking task, known as
the hijacking dataset, used for re-purposing the model.

B. Methodology

Achieving model hijacking attacks in the context of model
pruning presents two main challenges. Firstly, it is crucial to
ensure that the attack effects remain unaffected by pruning,
such as not being overridden by fine-tuning steps. Secondly,

without participating in the model training, the model needs
to understand and successfully execute the hijacking task.

To address these challenges, we introduce PRJack, a
pruning-resistant model hijacking attack designed to re-
purpose models in model pruning scenarios. PRJack conducts
its attack operations after the target model has undergone
training without directly modifying the model itself. Therefore,
the attack operations remain unaltered by subsequent fine-
tuning steps. Moreover, the adversary presumes a pruning
process to adapt the attack to model pruning scenarios, aiming
to make the attack generally effective for the target model
before and after pruning. Additionally, PRJack facilitates the
re-purposing of models by associating the hijacking task with
the original task, allowing a model trained on the original task
to effectively perform the hijacking task.

More specifically, the adversary associates the hijacking
input and output with those of the original task. We consider
performing a task as mapping input data to the expected
output. Taking an image classification task as an example,
the hijacking input is the image sampled from the hijacking
dataset, and the expected output is its corresponding label. In
PRJack, the adversary utilizes Label Mapping and Trans-
former to respectively map the labels and images of the
hijacking task onto the original task.

General Attack Pipeline. As a prerequisite in PRJack,
the adversary abstains from intervening in the training or
pruning of the target model, ensuring the target model’s
utility against the attack. Additionally, the pruning process
is solely determined by the model deployer, with parameters
independent of the attack. Therefore, the utility of the pruned
target model aligns with the deployer’s expectations, fulfilling
Objective 1.

Under this premise, Figure 2 shows an overview of our
PRJack attack. In general, PRJack initially selects a label-
mapping strategy based on the adversary’s attack objectives
and the pre-trained target model to determine the Label
Mapping. It then utilizes the target model and some presumed
pruning processes to train the Transformer. Subsequently,
when executing the attack on either the target model or a
pruned version of the target model, PRJack applies the same
Label Mapping and Transformer to re-purpose the model for
performing the hijacking task.

Label Mapping (M). Firstly, the adversary, through a certain
label mapping strategy, maps each label in the hijacking
dataset with an output of the target model for the original
task, resulting in a mapping table, namely Label Mapping.
This process enables the target model’s output on the hijacking
input to be interpreted as the corresponding hijacking label.
We assume that the class number of the hijacking task
should not exceed that in the original task; otherwise, the
target model’s output wouldn’t cover all labels in the hijacking
task. On this premise, we design a label-mapping strategy.
Concretely, given the target model (F') trained on an original
dataset (D,), the adversary queries it via hijacking samples
(i.e., data sampled from the hijacking dataset (D) and calcu-
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lates a confusion matrix. According to this confusion matrix,
the adversary employs the Hungarian algorithm to optimize
the mapping table (Label Mapping) between hijacking samples
and original labels predicted by the target model. As a result,
Label Mapping maps the i*" label from the hijacking dataset
(In,) to the jt" label from the original dataset (lo,5), i.e.
M(l}m) = lo,j and Mﬁl(lod) = lhﬂ;.

Transformer (7). Following the mapping of labels, the
adversary transforms the hijacking data for simulating the
data in the original task. This is achieved by a generative
network, namely Transformer. It takes a data sample from the
hijacking dataset and generates a new one with the features
in relation to a label within the original task. Specifically, this
label is the one matched with the hijacking label corresponding
to this hijacking sample. The target model designed for the
original task predicts a label for the transformed hijacking
sample according to its features. Subsequently, the adversary
correlates this predicted label back to the hijacking label
it matches, which serves as the ultimate prediction for the
hijacking task.

Given the Label Mapping, Transformer aims to transform
a hijacking sample (zp) with label [;, to have the features of
the original samples with label I, = M (l},). To achieve this,
we introduce a collaborative training approach to optimize the
Transformer, minimizing a combined classification loss across
multiple models. Specifically, the adversary trains the Trans-
former with the target model and one or more pruned models.
As the model deployer’s pruning process (P) is unknown,
the adversary constructs their own pruned models (F'¥’ ") with
presumed pruning processes (P’), including presumed pruning
technique, pruning rate, and number of fine-tuning epochs.
More formally,

argj{ﬂiH[Lc(F(Ig), L) +ay Lo(F5(xh),l)] (1)

where Lo measures the difference between model predic-
tions and the intended labels mapped from hijacking ones
(lo, = M(ly)), and « is a hyper-parameter that controls the
impact of pruned models on training Transformer. After this
collaborative training process, the target model and the pruned
model hosted by the model deployer are expected to predict
the transformed hijacking data as the corresponding label
(T'(z}) =1, and T? (x;)) = I,,), thus fulfilling the Objective 2.

For an adversary with extra intention of frame-up, the
input provided to the target model for the hijacking task, i.e.,
hijacking samples transformed by Transformer, is required
to preserve their appearance. Thereby, it makes the activity
of the model on the hijacking task easier to detect. To this
end, such an adversary additionally employs a visual loss
(Ly) to measure the difference between the input and output
samples of the Transformer. By minimizing this visual loss,
the Transformer keeps hijacking samples’ visual attributes,
thereby achieving Objective 3.:

arngin[LaF(T(xh)),l0>+a2_Lc<FP4 (T(xn)), lo)+

BLy (T (xn),zn)]
2
where [ is the hyper-parameter weighting the importance of
the visual loss for frame-up.

Attack Execution. The adversary executes their attack after
the calculation for label mapping and the training of the Trans-
former for sample transformation. For any sample derived
from the hijacking dataset’s distribution (zy), the adversary
transforms it with the Transformer. Then, the adversary queries
a pruned model (F*) with the transformed hijacking sample
(T'(zy,)) and corresponds its predicted label (I, = F¥(zT))
back to a label for the hijacking task (I, = M ~1(I))). We say
the pruned model performs successfully on a hijacking sample
if the hijacking label corresponding to its predicted label is the



same as the true label of this hijacking sample. More formally,
h=M"HEFP(T(2n))) == ln 3)
IV. EVALUATION

A. Experiment Setup

We evaluate the performance of the proposed pruning-
resistant model hijacking attack, PRJack, in PyTorch using
NVIDIA GeForce RTX 3090 GPUs with 23 GB of memory
(the code can be found at https://github.com/G3H4N/PRjack).

Datasets. We construct 3 attack groups with different image
classification benchmark datasets as original and hijacking
datasets: Group A attacking the models trained for 10-class
CIFARI10 [35] with 10-class MNIST [36] as the hijacking
dataset; Group B attacking 100-class BM100 [37] with 10-
class SVHN [38]; and Group C attacking 100-class CI-
FAR100 [35] with 43-class GTRSB [39].

Models. In the primary evaluation experiments, we utilized
ResNeXt50 [40] with 87 layers as the model architecture
for the target models in each attack group. Additionally,
ResNet50 [41] with 108 layers and DenseNet121 [42] with
240 layers were employed to diversify the configurations of
target model architectures in our experiments, as compared
and discussed in Section IV-C. Each model predicts labels for
32x32 input images.

Pruners. We employ the model pruning techniques provided
in the Microsoft open-source toolkit NNI [43] to prune our
models. Concretely, we have six pruners:

1) Taylor FO Weight Pruner [22];

2) AGP (Automated Gradual Pruner) Pruner [24];

3) Lottery Ticket Pruner [25];

4) Auto Compress Pruner [27];

5) AMC (AutoML for Model Compression) Pruner [26];

and 6) L2 Norm Pruner [23].

Specifically, we set the basic pruning algorithm in each
scheduled pruner (Pruner 2-5) as L1 Norm Pruner [23].

PRJack. We design Transformer in PRJack as a small-
sized generative model with 8 convolutional layers and we
employ Cross-Entropy Loss and MSE (mean squared error)
Loss to measure classification loss and visual loss respectively.
In the primary evaluation experiments, we optimize Label
Mapping for each target model and use L2 Norm Pruner
with a pruning rate of 70% as the presumed pruning process.
The pruned models with 1-epoch and 4-epoch (for Group A
and B) or 7-epoch (for Group C) fine-tuning, along with the
target model, are used to train the Transformer that transforms
data samples. Given the Label Mapping and Transformer, we
respectively implement PRJack on the target model and the
models pruned by target pruners, including Taylor FO Weight
Pruner, AGP Pruner, Lottery Ticket Pruner, Auto Compress
Pruner and AMC Pruner. For each target pruner, we set the
pruning rate as 50% and the number of subsequent fine-tuning
epochs as 5.

B. Attack Performance

Utility. We employ Utility that measures the model’s accuracy
on its original task to provide insight into how model hijacking
attacks fulfill Objective 1. To illustrate PRJack’s capability
of maintaining the model’s original performance, we use the
clean target model (“Clean”), devoid of any attack operations,
as a benchmark for comparative analysis.

Table I compares the Utility of clean models, models
attacked by the Naive attack, and models after executing the
PRJack attack. The column “No Pruning” represents the
utility of the target model without any pruning, while other
columns indicate the utility of models pruned using different
techniques. It is evident that PRJack does not impact the
performance of the target model or its pruned versions on the
original task (Utility of the clean model and the model after
PRJack remains the same). This is because the adversary
in PRJack does not interfere in the training of the target
model or the pruning process undergone by the deployed
model. Moreover, we notice that the Naive attack frequently
exhibits higher Utility than the clean model and PRJack.
This is attributed to the adversary in the Naive attack utilizing
additional hijacking data for training the target model, thereby
improving the model’s generalization ability.

Attack Success Rate. We employ Attack Success Rate
(ASR), representing the model’s accuracy on the hijacking
task, to reflect the effectiveness of our proposed attack in re-
purposing the model (i.e., achieving Objective 2). As described
in Section II-A, the Naive attack proposed by Salem et al. [8]
serves as an upper bound for existing model hijacking attacks’
ASR performance. Therefore, we compare PRJack with the
Naive attack (“Naive”), in which we set the ratio of original
data to hijacking data as 1:1.

As demonstrated in Table II, PRJack and the Naive attack,
both achieve remarkable ASRs on the target model (with
Pruner “No Pruning”) in each attack group, where the Naive
attack even has higher ASRs in Group B and C. However, once
the target models are pruned, the efficacy of the Naive attack
vanishes instantly, as if no attack had occurred (“Clean”).
Conversely, PRJack remains effective even after pruning with
fine-tuning, achieving an ASR higher than 82.0% in Group A
(78.3% in Group B and 90.2% in Group C).

Visualization and Visual Loss Weight 5. We visualize
the transformed hijacking images to qualitatively showcase
how our proposed PRJack enables the adversary to frame
the model deployer (Objective 3). We use images sampled
from attack Group C as an example, and Figure 3a and
Figure 3b are images respectively sampled from CIFAR100
(original dataset) and GTRSB (hijacking dataset). Addition-
ally, in PRJack attack, an adversary with malicious intent
can control the appearance of the transformed hijacking data
samples by adjusting the parameter 3. It controls the weight of
the Visual Loss within the overall loss function (Equation 2)
of the Transformer. When ( is set to 0 (Figure 3c), the ad-
versary has no specific requirements for the appearance of the



TABLE I: Utility of PRJack, compared with no attack operation (“Clean”) and the Naive hijacking attack (“Naive”).

Attack Pruner No Pruning TaylorFOWeight AGP LotteryTicket AutoCompress AMC
Clean 94.1 83.1 84.03 84.4 83.4 84.6

Group A Naive 95.4 89.5 88.2 88.8 89.5 89.6
PRJack 94.1 83.1 84.0 84.4 83.4 84.6

Clean 94.0 82.8 84.2 84.8 85.0 84.8

Group B Naive 95.8 85.0 86.2 86.8 87.4 90.0
PRJack 94.0 82.8 84.2 84.8 85.0 84.80

Clean 80.2 63.2 62.3 65.1 63.4 64.4

Group C Naive 80.6 63.7 63.6 62.5 64.3 62.6
PRJack 80.2 63.2 62.3 65.1 63.4 64.4

TABLE II: Attack Success Rate of PRJack, compared with no attack operation and the Naive hijacking attack.

Attack Pruner No Pruning TaylorFOWeight AGP LotteryTicket AutoCompress AMC

Clean 9.9 8.2 9.1 6.2 4.5 5.5

Group A Naive 99.5 5.0 9.8 3.1 5.1 33
PRJack 99.5 97.8 90.4 83.8 92.8 82.0

Clean 0.5 0.1 0.1 0.7 0.3 0.5

Group B Naive 96.9 0.1 0.2 1.0 1.6 0.1
PRJack 93.3 88.2 86.0 78.3 89.0 85.8

Clean 0.3 0.3 0.5 0.2 0.6 0.5

Group C Naive 98.6 1.1 1.0 0.8 0.7 0.2
PRJack 95.9 94.4 94.6 90.2 93.6 91.9
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(a) CIFAR100. (b) GTRSB.

(c) Transformed GTRSB
(PRJack, [£=0).

(d) Transformed GTRSB (e) Camouflaged GTRSB
(PRJack, p=15). (Adverse Chameleon).

Fig. 3: Examples for Group C: an original image from CIFAR100 (a), a hijacking image from GTRSB (b), two hijacking
images transformed in PRJack (c and d, with different values of ), and a hijacking image camouflaged by the Adverse

Chameleon attack.
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transformed hijacking data and focuses solely on increasing
the ASR. As g gradually increases, the Transformer puts more
effort into preserving the original appearance of hijacking data
(Figure 3d).

Among existing model hijacking attacks, the Chameleon

attack and its advanced version, the Adverse Chameleon
attack [8], are also designed to serve adversaries with specific
requirements for the appearance of hijacking data. The differ-
ence lies in that the adversaries in these attacks demand the
camouflaged hijacking data to visually resemble the original
task’s data for inconspicuous injection into the model training
set (as displayed in Figure 3e). PRJack, on the other hand,
as it does not poison the model training data, doesn’t require
camouflaging hijacking data but preserves its appearance for
framing intentions.

For each attack group, we compare the PRJack’s ASRs for
adversaries with and without a framing intention by modifying
the value of /3. Based on the complexity of different hijacking
tasks, we set beta as 1, 10 and 15 respectively for Group A, B
and C. In Figure 4, we observe that considering the appearance
of transformed hijacking data leads to a decrease in ASR.
However, under reasonable settings of /3, PRJack remains
effective in the pruning scenario, achieving ASRs of 67.2%,
68.1%, and 66.0% for Groups A, B, and C, respectively. These
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rates significantly surpass the upper limit of ASR in existing
model hijacking attacks, such as the Naive attack.

C. Ablation Study

Model Structure. For each attack group, we implement
PRJack to attack models with different model structures,
including ResNeXt50, ResNet50 and DenseNet121. Figure 5
shows that PRJack is generally effective for various target
model structures. Especially in Group A, PRJack achieves
an ASR as high as 99.4% on DenseNet121 models.

Target Pruning Process. Besides the diverse pruning tech-
niques used in Section I'V-B, we extend our evaluation more
granularly with other pruning parameters: pruning rate and
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Fig. 7: The comparison on diverse pruning process presump-
tions during the attack.

number of fine-tuning epochs. In Group C, we hijack the
target model with the model structure ResNeXt50 and evaluate
ASRs on models pruned by the Taylor FO Weight Pruner.
Concretely, we vary the pruning rate from 0.3 to 0.9 and the
number of fine-tuning epochs from 3 to 20. Figure 6 illustrates
that PRJack remains effective under diverse target pruning
process configurations, with ASR above 66.0%. However, as
the pruning rate increases and the model undergoes substantial
pruning, the model’s overall performance is compromised,
leading to a decline in both its original performance (Fig-
ure 6a) and performance on the hijacking task (Figure 6b).

Presumed Pruning Process. In Group C, we evaluate attack
performance with the ResNeXt50 target model and target
pruning process, including the Taylor FO Weight Pruner, 0.5
pruning rate, and 5-epoch fine-tuning. To evaluate the impact
of presumed pruning parameters on attack performance, we
separately employ Taylor FO Weight Pruner (same as the
target pruner) and L2 Norm Pruner (different) to obtain pre-
sumed pruned models, with the presumed pruning rate ranging
from 0.3 to 0.7 and fine-tuning from 1 to 9 epochs. From
Figure 7, we observe that if the Transformer is trained solely
on the target model, PRJack’s ASR reaches a maximum of
35.7% (“no pruning”). However, training Transformer on at
least one additional model pruned through a presumed pruning
process results in PRJack’s ASR being generally above
77.3%. Furthermore, the adversary’s pruning assumptions are
relatively flexible, but training Transformer on multiple pruned



models with different fine-tuning epochs (“1&7”) leads to
higher ASR compared to training on a single pruned model.

V. CONCLUSION

In this paper, we explore the model hijacking attack in
scenarios involving model pruning. By proposing a pruning-
resistant model hijacking attack PRJack, we demonstrate the
feasibility of re-purposing black-box pruned models with no
utility degradation and high attack success rates. Evaluation
results across different datasets, model structures, and pruning
techniques show our attack approach’s marked superiority on
pruned models over existing model hijacking attacks.
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